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expected, that the maxima 4', 4", 3' and 3" which form 
two pairs might not correspond to bromine atoms. 
This is not astonishing in view of the fact that the 
value G4 is the smallest of all Gj values. The six bromine 
atoms found were taken as a starting point for a 
three-dimensional Fourier synthesis with cycles of re- 
finement following. These confirmed the correctness 
of the conclusions arrived at by the SFE method. 

The authors wish to thank Professor K. Dornberger- 
Schiff and Dr E. H6hne for helpful discussions and 
critical reading of the manuscript, and also Mr H. G. 
Weiss, Mr H. Benens, Mr R. G. Kretschmer and the 
computing centre of the Zentralinstitut ffir physika- 
lische Chemie. 
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A method developed earlier [Fedorov & Aleshin (1966) Vysokomol. Soed. 8, 5016; translated into Eng- 
lish in Polymer Sci. USSR (1967) 8, 1657] which permits the determination of the radial electron den- 
sity distribution function of cylinders on the basis of the small-angle scattering curve, is applied to the 
study of the tobacco mosaic virus structure. The results obtained are in good agreement with the X-ray 
structural analysis of TMV. Questions concerning the extrapolation of the experimental curve, the 
estimation of the obtained resolution of electron density as well as the possibilities of this method are 
also considered. 

Introduction 

Over a period of some years different authors have 
analysed the angle distribution of intensity of small- 
angle X-ray diffuse scattering by cylindrical unorien- 
ted particles. From some peculiarities of the scatter- 
ing curve a number of methods of treating small-angle 
X-ray data were suggested to obtain the main param- 
eters characterizing the cylinder. The most widely 
known methods are Kratky's method (Kratky & Porod, 
1948; Porod, 1948) based on the use of a 'point' collim- 
ation and Luzzati's method (Luzzati, 1960; Luzzati, 
Mathis, Masson & Witz, 1964) which suggests the ex- 
istence of an 'infinitely' high collimation slit. Both tech- 
niques analyse the same section of the scattering curve 
by a long rigid particle and give similar information on 
its structure (the electronic radius of gyration of the 
cylinder with respect to its axis Rq). Kratky's method 
consists of rearranging the experimental curve into co- 
ordinates of log [I(O)O] vs 02 (I(O) being the scattering 
intensity at an angle of 20) having, as was shown, a 
linear dependence in some region of the 02 change, and 
in finding Rq from the slope of this curve. Luzzati's 

method is based on superposing the experimental curve 
plotted in a double logarithmic scale on a set of theor- 
etical curves calculated (with some approximations) for 
long rigid uniform cylinders, the same parameter, Rq, 
being determined by the coincidence of the curves. 

Besides these two well-known methods for study of 
the structure of unorientated cylindrical particles (ma- 
cromolecules) it is necessary to mention a simple meth- 
od suggested by Fedorov & Ptitsyn (1963) for deter- 
mining the diameter of the cross section of a uniform 
cylinder by the position of a maximum of the depen- 
dence of I(O)O 2 vs 0, as well as Kirste's (1964) method 
which, within the framework of a concrete model of a 
non-uniform cylinder, allows the evaluation of two of 
its parameters. In the latter work a form factor of the 
particle cross section is replaced by the form factor of 
a uniform sphere surrounded by a vacuum spherical 
layer. The technique suggested permits the determina- 
tion of Rq and the relation of the diameter of the sphere 
with a shell to the diameter of the sphere itself. Of 
course, this model may have a rather limited applica- 
tion. 

If we add to the method mentioned above the usual 
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'standard curve' method, according to which the diam- 
eter of a uniform cylinder is found from the coincidence 
of the experimental curve with one of the theoretical 
ones calculated for different diameters, the list of meth- 
ods employed for treating the curves of small-angle 
scattering by unoriented cylinders will be exhausted. 
As can be seen, neither of them give sufficiently de- 
tailed information on the electron density distribution 
within the particle, limiting themselves at best to the 
determination of the Rq value. 

In 1965 the author in collaboration with V. G. Ale- 
shin (Fedorov & Aleshin, 1966) suggested a theory of 
X-ray diffuse scattering by non-uniform long cylinders 
with an arbitrary but axially symmetrical electron den- 
sity distribution function within the particle. On the 
basis of this theory a method of calculation of the men- 
tioned distribution function using the Hankel trans- 
form for the whole experimental scattering curve was 
developed. 

In a recent work by Carlson & Schmidt (1969) this 
method was subjected to checking for various test func- 
tions of the electron density distribution and its effec- 
tiveness was demonstrated for the case where the used 
section of the intensity scattering curve possesses a suf- 
ficient length. 

A slightly improved method of the Hankel transform 
was used in the present work for study of the internal 
structure of tobacco mosaic virus (TMV), and its ad- 
ditional analysis was carried out to check the reliability 
and accuracy of the data obtained. 

The scattering function and the diffuse 
scattering amplitude 

As was shown in Fedorov & Aleshin's (1966) work, 
for an axially symmetrical cylinder of height b and a 
radius of a complete fall in electron density a under the 
limitations imposed on the height of the cylinder 
ag/b2~ 1 and on scattering angle~/lb >> 1 (/l = 47~ sin 0/2, 
where 2 Js the X-ray wavelength and 20 is the angle of 
scattering) the following expression for the relative in- 
tensity of diffuse scattering P(/~) is valid: 

4~Z3 ~ 2 

P(ct) = ~--b~-2 [ l0 o(r)Jo(lur)rdr] (1) 

Here Q(r) is the radial electron density distribution func- 
tion of the cylinder, Jo(l~r) is the Bessel function of the 

zero order, while m = 2re (r)rdr is the linear electron 

density of the cylinder. 
Expression (1) in the work by Fedorov & Aleshin 

(1966) is calculated with the aid of Debye's (1927) for- 
mula. However, it can be easily derived also from the 
general theory of X-ray diffraction by a cylinder. Ac- 
tually, an infinitely long cylinder with the electron den- 
sity distribution function ~(r) can be described, in an 
inverse space, by only the zero layer line, the scattering 

amplitude along which (see Vainshtein, 1963) is: 

F(R)= 2re Q(r)Jo(2rcRr)rdr . (2) 
0 

R=2 sin 0/2 is the cylindrical coordinate of the inverse 
space (corresponding to the coordinate r of the real 
space), while the intensity of scattering I(R)= FE(R). 
Upon arbitrary 'twisting' of the cylinder in relation to 
the X-ray primary beam the diffraction pattern in the 
inverse space is smeared so that the intensity 
2rcRI(R)dR included in the layer line, in a ring of 
width dR at a distance R from the origin of the inverse 
space, is uniformly distributed in a circular layer 
4rcRZdR of the same width. As a result, the intensity of 
scattering at a distance R will be I(R)/2R, or, in terms 
/l=2zrR, 

4rc 3 oo 2 
I(lu)=--fi-[SoO(r)Jo(lir)rdr ] (3) 

which, with an accuracy of the normalizing factor 1/bm 
leading to relative values of the scattering intensity, 
agrees with formula (1). 

It first follows from expressions (1) and (3) that both 
the intensity of scattering by a non-uniform cylinder, 
with restrictions imposed on its height, and the scatter- 
ing angles can be represented as a square of some inte- 
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Fig. 1. Theoretical curves of scattering by cylinders with dif- 
ferent o(r) function: . . . . .  uniform cylinder; ~ cy- 
linder with a 'hole' (points at which the curve breaks during 
the study of the error of Hankel transform are marked - see 
Fig. 6); . . . .  hollow cylinder. 
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Fig.2.  Scattering curve of  T M V  according to Ma lmon ' s  
(1957) data.  - -  exper imental  section; . . . .  extrapola-  
t ion section;  . . . . .  correct ion of  the exper imental  curve;  
. . . . . .  theoretical  curve of  scattering by a cylinder with a 
'hole '  reconst ructed  into the cor responding  coordinates .  

gral depending on Off). By analogy with X-ray analysis 
let us term the function 

1//-(~ =2rt V-~loO(r)Jo(ltr)rdr (4) A(/.t)= _+ 

a diffuse scattering amplitude. We should note in 
this case that the analogy mentioned is, generally 
speaking, purely external, since the A(/t) value deter- 
mined in such a manner is not a sum of electromagnetic 
waves scattered by all elements of the object (which 
would be natural under normal physical determination 
of the scattering amplitude) but represents a square root 
of the sum of all the intensities of scattering equidistant 
from the origin in the inverse space. Nevertheless, such 
a formal determination appears to be rather convenient 
inasmuch as the A(/I) value is fully analogous to the 
classical scattering amplitude F(R) in terms of mathe- 
matical formalism. 

A special feature of the diffuse scattering amplitude 
introduced above is that it represents, like F(R), a real 
value and reduces the scattering intensity to zero at 
points of sign alteration. It is true that the ability of the 
scattering intensity to be transformed into zero at cer- 
tain/l values is characteristic of only infinitely long and 

rigid cylinders. Generally speaking equation (1) is in- 
applicable for cylinders of restricted length, and there 
are no points of contact I(/z) with the x axis. However, 
from general physical considerations, it can be pre- 
dicted in the first place, that for increasing/t, the min- 
ima of the function, showing the intensity of scattering 
by restricted cylinders, approach the /z axis (the in- 
fluence of the ends is less felt). Secondly, every given 
minimum must experience the same tendency with the 
increase in the length of the cylinder. 

Both these properties are distinctly noticeable in the 
graphs of the curves of scattering by uniform cylinders 
of finite length calculated numerically at different ratios 
V of the height to the diameter (Malmon, 1957). For 
example, at V= 3 the ordinates of the first and second 
minima differ by an order (I(0) x 10 -3 and I(0) x 10 -4, 

correspondingly). On the other hand, the ordinate of 
the first maximum of the cylinder with V= 10 [I(0) x 
10 -4 ] also decreases by an order in comparison with 
the cylinder where V= 3. 

Using the Hankel transform in equation (4) 

1 l ;A  (/~) l//ZJo(/zr)/xd/~ off)= (5) 

we obtain a direct relation between the electron density 
distribution and the real diffuse scattering amplitude 
A(/z) the knowledge of which (i.e. the knowledge of the 
order of sign alteration upon the extraction of the root 
from the experimental intensity of scattering by long 
non-uniform cylinders) makes possible the numerical 
calculation of the desirable function o(r). Evidently, 
the most essential moment in passing from the exper- 
imental scattering curve to A(/~) is the correct extrac- 
tion of roots I(¢z) (i.e. the points of contact I(/,) with 
the/z axis), since it is they that correspond to the region 
of sign alteration of the diffuse scattering amplitude. 
The accuracy of the construction of A(/~) and, conse- 
quently, also the calculation accuracy of the o(r) value 
are mainly responsible for the reliability of identifica- 
tion of the given points and the possibility of their 
exact separation from other features of the scattering 
curve. 

In the work by Carlson & Schmidt (1969) two kinds 
of electron density distribution functions [01(r)= 
exp ( -  r/R) and 02(r)-= exp ( -  ri/R2)] are given, for 
which the diffuse scattering amplitude does not change 
the sign at all and remains positive at all ¢t values. 
However, a class of functions with the given property 
is, probably, small since even a slight variation of the 
o~(r) and 02(r) functions leads to the sign alteration of 
the A(/t) value. In fact, even for functions 01(r)= 
r n exp ( - r / R )  and Qz(r)= r n exp ( - rg /R 2) the diffuse 
scattering amplitudes will cause a sign change: 

A l ( / . t )  - ~ '7 o exp {-r/R}Jo(lar)rn+adr 

(n + l)! (_~ +tu2) -(n+2)/2 pn+l(1/Vi + R21.t2) 
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and 

loo 
1 exp {-rZ/RZ}Jo(/ar)rn+ldr A2(u)z  o 

1 
- - - R n + z C ( 2 + I  ) exp{-lzZR2/4} 

(n 
x ~  - ~ -  ;1; 

where Pn+l(x) are Legendre polynomials ('sign-chan- 
ging' functions at n > 0), while q~(e;1 ;x) is the confluent 
hypergeometrical function also possessing zeros at 

< 0. It should be noted that this conclusion is not con- 
nected with the appearance of the 'hole' in electron den- 
sity distribution at r=0 ,  since the substitution of 
(1 + r) n for r n in functions O'l(r) and O'z(r) qualitatively 
maintains the same result. Thus, the problem of iden- 
tification of the sign of the A(/a) value evidently re- 
quires, as a rule, a thorough analysis. 

Extrapolation of the experimental curve of scattering 
by a cylinder into the region of smallest angles 

For improving the resolution ability of the method 
let us now consider the extrapolation of the curve of 
scattering by a cylinder into a non-experimental region 
of angles. It is clear that a simple break of the exper- 
imental curve can be taken as an assumption that 
scattering intensity of the curve is equal to zero both 
from its left and from its right. It is also obvious that 
such an assumption is one of the worst and even a 
rough extrapolation of the curve would be rather es- 
sential. Therefore, let us now attempt to extend the 
ends of the curve, building up l(/a) in some physically 
justified manner. 

In this respect, the extrapolation into the region of 
the smallest angles is more reliable. If the experimental 
index of scattering has on its left side a section of the 
curve proportional to/a-l, the extrapolation in this case 
is extremely simple and consists in extending the exper- 
imental curve according to the mentioned law up to 
/a = 0. However, it may appear that even at the smallest 
experimentally obtainable scattering angles the curve 
'feels' the cross-section dimensions of the cylinder and, 
as a result, the index of scattering is not proportional 
to p-1 (#-1 is the law of scattering for an infinitely long 
one-dimensional rod). Let us consider for this case an- 
other extrapolation method based on the fact that the 
section of the scattering curve proportional to/a-x is 
followed by a sufficiently extended region of the curve 
depending only on the Rq value. Here, the intensity of 
scattering is found to be a function of Rq/a. It is clear 
that indices of scattering by cylinders of different in- 
ternal structure but of the same Rq value coincide in 
the given section of the curve. On the other hand, taking 
the intensities of scattering by cylinders with any 0(r) 
and Rq values in a double logarit .hmic scale (log I(/0 
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Fig. 3. Diffuse scattering amplitudes calculated on the basis of 
the TMV experimental scattering curve (Malmon, 1957) 
with the consideration of two (broken line) and three (solid 
line) points of contact 2(0) with the 20 axis. 

vs log (Re/a) we should expect a significantly similar 
course of the curves at the smallest angles, including 
also the above mentioned region. 

The relative values of Rq quantities as well as their 
absolute values (in the case when one of the Re values 
is known) can be easily calculated by a shift of the 
curves along the log/a axis. On the basis of this, the 
following procedure of extrapolation of the exper- 
imental curve, which contains a section depending only 
on Re, into the region of the smallest angles of scatter- 
ing can be suggested. Having plotted the theoretical 
curve of scattering by any infinitely long cylinder in a 
double logarithmic scale in a wide range of angles, it 
should be superposed in the best possible manner on 
the left part of the considered experimental curve also 
plotted in a double logarithmic scale. In this case the 
section of the theoretical curve positioned on the left 
from the superposed part of the curve is extrapolated 
for the experimental index of scattering. Here, from the 
shift of the curves along the log I(/a) axis a 'cross-link' 
constant can be easily determined. It should be noted 
that although the distribution of Q(r) can generally be 
chosen arbitrarily in calculating the theoretical curve, 
the closer it is to the electron density distribution in the 
cylinder studied, the wider the region of superposing 
of the curves and the more accurate the extrapolation. 

As an example of the cited extrapolation procedure 
let us consider three curves of scattering by cylinders 
calculated by formula (1) with the following Q(r) values: 
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1 r < l  
~ol(r)= 0 r > 0  

0 r<0.25 
02(r)= 1 0 .25<r<1  

0 r > l  
Q3(r) = J(1 - r )  

(uniform cylinder) 

(cylinder with a hole) 

(hollow cylinder). 

These cylinders possess a sharply different character of 
radial electron density distribution, which must lead 
to a noticeable difference in the scattering curves. How- 
ever, as is seen from Fig. 1, in which the indicated 
curves are presented, variations start only from the 
first side maximum. Thus, the extrapolation into the 
region of small angles by the method cited is possible 
if the experimental curve contains, at least, a small sec- 
tion on the left from the first minimum. 

Calculation of TMV electron density 

Let us make use of the developed method of •(r) cal- 
culation for study of the internal structure of tobacco 
mosaic virus. This virus meets necessary requirements 
of the theory (rigidity and a sufficient length of cylin- 

/ 4 

40 50 60 70~80 90 100 r(A) 

- 5  

Fig. 4. Radial  electron density distr ibution functions calculated 
by the Hankel  t ransform me thod  according to the data 
shown in Fig. 2 with the considerat ion of  only two points 
of  contact  I(O) with the 20 axis. Curve I - calculation on the 
the basis of experimental  section and section extrapolated 
into the region of smallest angles of  the curve in Fig. 2; 
Curve II - calculation on the basis of  experimental  section of  
the curve in Fig. 2. - . . . .  o(r) function for TMV accord- 
ing to Caspar's (1956) data, 

ders) and possesses a sharply non-uniform electron 
density distribution in the cross section, which makes 
it quite convenient for the analysis. Besides, TMV has 
been thoroughly studied by other methods, including 
X-ray analysis and its structure is common knowledge. 

In a number of works the study of TMV was also 
carried out by small-angle X-ray diffuse scattering. In 
the work by Kratky, Paletta, Porod & Strohmaier 
(1957), the radius of gyration of the TMV cross section 
(59.6 A) was obtained on the basis of the mentioned 
above 'Kratky's method'. This evidence was in good 
agreement with Caspar's (1956) data (59 •) obtained 
by a direct method of X-ray analysis. At the same time, 
an attempt to find by the scattering curve whether the 
virus is a solid or hollow cylinder was not then success- 
ful. Malmon (1957) employed an incomparably more 
perfect experimental scattering curve of TMV on which 
two distinct maxima were observed (see Fig. 2, solid 
line) and treated it from the viewpoint of the theory of 
diffuse scattering by uniform non-oriented cylinders. 
The position of the first (left) maximum corresponds 
to a TMV radius of ~ 82 ,~ agreeing well with Caspar's 
(1956) data (84 A), however, the abscissa of the second 
maximum gives a radius of ,-, 70 A. The author reason- 
any  explains this difference which obviously exceeds 
the experimental error by a non-uniform character of 
electron density distribution within the virus. It was 
clear that the experimental curve has a greater stock 
of information on the internal structure of the virus, 
but owing to the lack of an appropriate theory it was 
not then possible to obtain such information. 

In the calculations given in the present communica- 
tion we shall make use of the same scattering curve of 
TMV, the working graph of which was kindly sent to 
us by Dr Malmon. This curve (solid line) together with 
the extrapolation section (dash-and-dot line on the left 
from the solid one) which was plotted according to the 
procedure cited in the preceding section is demon- 
strated in Fig. 2 (a uniform cylinder was taken as a 
'standard' cylinder for obtaining the theoretical scatter- 
ing curve). 

It is necessary now to solve the main task, i.e. to 
determine the points of contact I(/~) with/z axis. At 
first glance the solution seems to be obvious: two sharp 
minima, being most likely the desired points, are ob- 
served on the scattering curve. They must only be slightly 
corrected (broken line in the region of0.011 and 0.025 
rad, Fig. 2). After this, the plotting of the diffuse scatter- 
ing amplitude (broken line, Fig. 3) as well as the calcu- 
lation of the Q(r) function by formula (2) with the aid of 
a computer (curve I, Fig. 4) present no special problems. 
For convenience in comparison, Fig. 4 gives the TMV 
radial electron density distribution curve calculated by 
Caspar (1956) by means of direct methods of X-ray 
analysis (broken line). We see that the obtained 0(r) 
function describes quite satisfactorily the TMV internal 
structure, namely: there is a noticeable decrease in elec- 
tron density at low r values, the maximum of electron 
density is relatively close to the true one and, finally, 
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there is a good coincidence of external dimensions of 
the cylinders. Opportunely, it should be noted that such 
a result is determined, in the main, by the successful 
extrapolation of the scattering curve into the region of 
the smallest angles. In fact, if we restrict ourselves in 
the calculation only to the experimental section of the 
considered scattering curve of  TMV, the coincidence 
will be substantially worse (curve II, Fig. 4). 

In spite of  the quite fair agreement of  the calculated 
function with the true one, a more detailed analysis 
shows that the diffuse scattering amplitude is most like- 
ly plotted incorrectly. Even the shape of experimental 
scattering intensity (Fig. 2) may raise some doubts as 
to the correct consideration of only two points of con- 
tact I(/l) with the axis: in the region of angles from 
0.020 to 0.025 rad we distinctly notice a 'shoulder' 
which can be interpreted as an unresolved maximum 
on the left from which there is still one more zero of the 
/(20) function. However, we should come more def- 
initely to such a conclusion on the basis of the intensity 
of scattering by a cylinder, calculated by formula (1) and 
represented in Fig. 2 by the dotted line. The known 
size of 'hole' in TMV is used in the calculation as the 
'hole' size of the cylinder. We see that between the 
first and third side maxima on this curve there exists a 
relatively small second maximum which is slightly 
shifted with respect to the position of  the 'shoulder' on 
the TMV scattering curve. If we take into account that 
the index of scattering by such a cylinder with 'hole' is 
qualitatively close to the index of TMV scattering, the 
existence of one more maximum in the region of the 
'shoulder' on the TMV scattering curve seems quite 
probable. 

For  the calculation of  the new diffuse scattering am- 
plitude it is necessary to 'correct' preliminarily in an 
appropriate manner the experimental scattering inten- 
sity. Since this procedure cannot be conducted unequi- 
vocally, we considered several means for modification 
of the curve/(20)  (curves I to III, Fig. 2) and for every 
curve we plotted the A(20) value and calculated the 
Q(r) function. Fig. 3 (solid line) represents one of the 
diffuse scattering curves obtained in such a manner 
(corresponding to curve II, Fig. 2), while Fig. 5 (curves 
I to III) gives the desired radial electron density distri- 
bution functions. 

Discussion 

Undoubtedly, curves I to III shown in Fig. 5 give a 
better description of  electron density distribution in 
TMV than curve I in Fig. 4. Maxima of  the true and 
calculated functions of o(r) fully coincide and a sharp 
fall in electron density at low r values is a clear indica- 
tion of the existence of the 'hole' inside the cylinder. 
It can be said that the curves thus obtained are a kind 
of  envelope line of the complex true electron density 
function. It can be also predicted that with the exper- 
imental TMV scattering curve being more extended 
towards large angles, such elements of the TMV struc- 
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Fig. 5. Radial electron density distribution function calculated 
by the Hankel transform method according to data given in 
Fig. 2 with the consideration of three points of contact I(20) 
with the 20 axis and extrapolated (into the region of the 
smallest angles) section of the scattering curve. Curves I to 
III (corresponding to curves I to III in Fig. 2) - different 
means of correction of the experimental curve in the region 
from 0.020 to 0.025 rad; curves II' and II" correspond to 
curve II in Fig. 2 and take into account its extrapolation into 
the region of larger angles as shown in Fig. 2 (lines II' and 
II"). - . . . .  o(r) function for TMV according to Caspar's 
(1956) data. 

ture as a minimum of electron density in the region of 
60 • and, probably, of 30 ill, would resolve. And though 
recently developed modern experimental technique 
would permit us at present to obtain more perfect and 
elongated indices of TMV scattering, nevertheless, if 
the repolymerized RNA-free TMV was studied, even 
the given resolution would be enough for its reliable 
distinction from RNA-containing TMV. 

It is seen from Fig. 5 that the curves differing in the 
manner of 'correction' I(20) are very close to each 
other, but at the same time differ essentially from the 
earlier obtained Q(r) function (cf. Fig. 4). A conclusion 
can be drawn that the 0(r) function is rather sensitive 
to the number of maxima and minima on the diffuse 
scattering amplitude and has a relatively slight depen- 
dence on the localization of at least one zero of the A(20) 
value. 

As is known, the methods based on the transforma- 
tion of  the whole curve of scattering, though using 
practically only a part of it, may in principle, lead to 
errors and even artifacts. The work of Carlson & 
Schmidt (1969) is devoted to the study of  this question 
as applied to the Hankel transform (for the case of  
three kinds of the •(r) function). We shall dwell on this 
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problem only for the estimation of our results. For this 
purpose let us consider the theoretical curve of scatter- 
ing by a cylinder with a 'hole' (solid line, Fig. 1) and, 
breaking the curve at different scattering angles, trans- 
form it by formula (2). As is seen from Fig. 6, in which 
the results of such a 'reverse' calculation are presented, 
curve III obtained from the theoretical index of scatter- 
ing with three side maxima satisfactorily describes the 
initial function. If it is taken into consideration that 
we made use of just these three side maxima in calcu- 
lating the TMV electron density shown in Fig. 5 and 
that the electron density profile of the considered cyl- 
inder with a 'hole' must be relatively close to Q(r) of 
TMV, then the conclusion can be drawn that resolution 
of the curves in Fig. 5 approximately corresponds to 
curve III shown in ~'ig. 6. Thus, the occurrence of the 
artifact is completely excluded in this case. Moreover, 
a considerable decrease in the Q(r) value for curves I 
and II (Fig. 6) also at low r is not an artifact and quali- 
tatively reflects the electron density distribution though 
corresponds to a still lesser resolution. 

If the extrapolation of the scattering intensity in a 
small-angle region is a comparatively easy problem, the 
extension of the experimental curve by 'larger small' 
angles runs into a principal difficulty - the complete 
absence of information on the character of behaviour 
of I( /0 in this region. Nevertheless, extrapolation in 
one form or another is needed, since, as was men- 
tioned, simply a break of the curve is the worst way to 
get out of a difficulty. Therefore, we restricted our- 
selves to rather arbitrary extrapolation of the curve 
into the region of/z >/Zmax only up to the intersection 
of I(/z) with the abscissa axis. Fig. 2 represents two dif- 
ferent examples of extrapolating the curve into the re- 
gion of larger angles (dash-and-dot lines II' and II" on 
the right from the solid line). These curves (also taking 
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Fig. 6. Calculation of o(r) function for the cylinder with a'hole' 
on the basis of the solid curve in Fig. 1 at different angles 
]/max of its break: C/max= 0"11 ~-1 (curve I); amax =0-125 ,~-I 
(curve II);/~max=0"150 .~-1 (curve III). 

into account the extrapolation into the region of the 
smallest angles) correspond to curves II'  and II"  in 
Fig. 5 transformed on o(r). For the remaining curves 
the large angle extrapolation has not been carried out. 
As is seen, the mere fact of extrapolation as well as its 
manner has a negligible influence in our case on the 
result obtained. However, it can be shown that the 
mentioned extrapolation plays a more essential role for 
the first of the considered cases of plotting o(r) where 
only two points of contact I(p) of the experimental 
curve with the 20 axis were taken into consideration. 

The basic formula (1) was derived on the condition 
that the electron density of the cylinder was indepen- 
dent of the shift along its axis. Practically however, the 
particles approximated by cylinders are, as a rule, 
rather complex helices and the usage of the present 
method for such helices is determined by the ratio of 
the step of a helix and its diameter. If the helix is rela- 
tively compressed, the layer lines corresponding to it 
in the inverse space are found to be sufficiently spaced 
from each other so that the intensity of the first layer 
line would not make a contribution to the experimental 
intensity of small-angle scattering. This is so in the 
case of TMV. The first 'strong' layer line responsible 
for a TMV helix coil with a step of l =  23 A is located 
at an angle distance of 20 = 2/l= 0.067 rad. This makes 
it possible to extend (in comparison with the curve in 
Fig. 2) the experimental region of TMV scattering an- 
gles without fear of introducing the intensities of the 
non-zero layer lines into the index of scattering. 

Another limitation of formula (1) is that the axial 
symmetry of electron density is needed. If there is no 
such symmetry, the scattering amplitude along the zero 
layer line will be determined by Bessel functions of all 
orders, but if the cylinder has a circular symmetry of 
the N order, the amplitude will be determined by the 
Bessel function of the nN order. However, the contri- 
bution of the Bessel functions of high orders to the 
scattering intensity is small, and for the cylinder with a 
sufficiently high axial symmetry formula (1) may be 
considered to be valid. 

Until the present time a technique comparable to 
that described in this communication was used in small- 
angle X-ray diffuse scattering as applied only to spheres. 
In recent years a number of works have been carried 
out (also on the basis of the Fourier transform of the 
scattering amplitude) in which a spherically symmetri- 
cal electron density distributionfunction for a series of 
spherical viruses (Anderegg, 1967) and apoferritin 
(Fischbach & Anderegg, 1965; Bielig, Kratky, Rohns 
& Wawra, 1966) was obtained. In the mentioned cases 
the application of this method proved very successful, 
the study of apoferritin being conducted independently 
by the two groups of authors, and led to similar results. 

The development of a similar method for long cylin- 
ders was made possible, in the sense that in this case as 
well as in the case of spheres it was possible to express 
the scattering intensity as a square of some function 
which we denoted as a diffuse scattering amplitude. As 
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is known, functions of scattering by other simple geo- 
metrical bodies which are widely used for modelling 
different structures (oblate and prolate ellipsoids of 
revolution, discs and other short cylinders) have not 
been given a proper representation and, therefore, the 
development of an analogous technique for them is ap- 
parently impossible. 

The author is indebted to Dr A. G. Malmon for 
kindly providing the working graph of the TMV small- 
angle scattering curve and to T. A. Erokhina for valu- 
able assistance in computing. The paper was translated 
into English in the Laboratory of Scientific Informa- 
tion, Institute of Protein Research, Academy of Scien- 
ces of the USSR. 
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There are a number of different Bloch wave labelling systems currently in use in the theory of the dif- 
fraction of electrons by crystals. It is suggested that the Bloch wave labelling scheme for electron dif- 
fraction which is the simplest and the most logical is an ordered labelling scheme in which the top 
branch of the dispersion surface corresponds to wave 1, the second branch to wave 2, the third branch 
to wave 3, and so on. Such a scheme would be consistent with accepted notations in other forms of 
Bloch wave propagation. The essential mathematical unity of all forms of wave propagation in crystals 
is discussed, and the use of the proposed notation in describing the critical voltage effect is briefly 
considered. 

1. Introduction 

In recent years it has become increasingly clear that 
the use of a many-beam theory of electron diffraction 
is essential for the quantitative interpretation of elec- 
tron micrographs of crystals taken using conventional 
100 kV microscopes, and for both qualitative and 
quantitative interpretation of micrographs taken using 
higher voltage instruments. However, no satisfactory 
labelling scheme has been established for identifying 
the various Bloch waves which represent the fast elec- 
tron within the crystal. A variety of such schemes exist 

* On leave from the Department of Metallurgy, University 
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in the literature, and the purpose of this paper is to 
examine the situation and to propose a simple but 
unambiguous method of referring to the individual 
Bloch waves which it is suggested might be generally 
adopted. It is also unfortunately the case that the 
theory of electron diffraction has developed largely in- 
dependently from that of, for example, lattice vibra- 
tions and band theory. In this paper the essential unity 
of all forms of Bloch wave propagation in crystals will 
be emphasized, and the proposed notation will be cho- 
sen to be consistent with standard notations in related 
fields. 

2. Definition of the problem 

Consider an electron incident upon a perfect crystal. 
The wave function of the electron within the crystal 


